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Although a great deal of work has been carried out on nonlinear structural dynamic

systems under random excitation, there has been a comparatively small amount of this

work concentrating on the calculation of the quantities commonly measured in

structural dynamic tests. Perhaps the most fundamental of these quantities is the

interesting approach to estimating the FRF of a Duffing oscillator system which was

based on an approximate solution of the Fokker–Planck–Kolmogorov equation. Despite

reproducing the general features of the statistical linearisation estimate, the

approximation failed to show the presence of the poles at odd multiples of the primary

resonance which are known to occur experimentally. The current paper simply extends

the work of Yar and Hammond to a higher-order of approximation and is thus able to

show the existence of a third ‘harmonic’ in the FRF. A comparison is made with previous

work where an approximation to the FRF was computed using the Volterra series.

& 2010 Elsevier Ltd. All rights reserved.
1. Introduction

Experimental structural dynamics is commonly based on the computation of a number of features of vibration, based on
the frequency domain representation of time data. The most often-used feature is arguably the frequency response
function (FRF), which gives a directly interpretable representation of the response behaviour of a given structure.
Information which is immediately available from the FRF includes the position (in frequency) of resonances and the extent
to which the resonances are damped. The FRF is of such importance that standard instrumentation is available for its
measurement in the laboratory. Such instrumentation varies considerably in its versatility (and cost), but common to all
systems is the fact that computation of the FRF is based on standard Fourier analysis and linear system theory. In many
cases, this is perfectly adequate for vibration testing; however, in the case where a significantly nonlinear system is under
test, the measured FRFs can display features which are absent in the linear case. Such features can include the presence of
FRF peaks at multiples (harmonics) of the fundamental resonance frequencies.

One might argue that the FRF, founded as it is in linear system theory, is not conceptually appropriate for the study of
nonlinear systems. This argument is countered by the fact that standard spectrum-based estimates of the FRF, applied
unmodified to nonlinear systems, can often expose the nonlinearity and shed light on its nature. A simple approach to the
diagnosis of nonlinearity, which is of enormous importance in itself in experimental structural dynamics, is to extract FRFs
corresponding to different levels of excitation; any difference between the measured FRFs supports the conclusion
that the system is nonlinear. Changes in the FRF peak frequencies or peak widths as the excitation level changes can
indicate whether the system is subject to stiffness or damping nonlinearities; in the former case one can see if the stiffness
ll rights reserved.
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is hardening or softening, in the latter, one might distinguish between polynomial damping and friction. The presence of
FRF peaks at harmonics or sums and differences of the main resonances can shed light on whether the nonlinearity is an
odd or even function. All of this information is very valuable as a precursor to a full system identification and is available in
the laboratory from instrumentation based on linear spectral analysis. These issues are discussed in considerable detail in
the monograph [1]. Also discussed there is the use of the Hilbert transform, which can be used to diagnose system
nonlinearity on the basis of a single FRF measurement at one excitation level. Extensions to the standard linear frequency
domain analysis appropriate to nonlinear systems are available, the most popular being that based on the Volterra series
and Higher-order FRFs [1]. As one might expect, the Volterra series provides a much richer characterisation of nonlinear
system behaviour than any analysis founded in linear spectral theory; however, it is conceptually much more complex and
is not generally available in experimental instrumentation.

Having argued that there is a considerable practical advantage to be gained from applying the standard FRF analysis to
nonlinear systems; it is clearly desirable to have analytical expressions for the FRFs concerned in order to shed light on how they
deviate in their behaviour from that expected for linear systems—this is a difficult problem. A further issue is that random
excitation is commonly used, for practical reasons, in order to extract FRFs, and the analysis of nonlinear system response under
random excitation is difficult. One approach to the analytical approximation of nonlinear system FRFs under random forcing is
to use the Volterra series mentioned above and its associated Higher-order FRFs. This approach has led to analytical
approximations of the FRF of a Duffing oscillator [2] and also to some preliminary analysis for a multi-degree-of-freedom system
FRF [3]. The appeal of the Volterra approach for the current authors is based on the fact that it leads to a ‘mode-like’ expansion
for the FRF which exposes the positions of the poles, and hence resonances, in a manner which makes direct contact with modal
expansions derived from test and linear analysis. The Volterra approach is also well-suited to combination with the Hilbert
transform [1]. In general, there has been substantial work in the past which has led to various expressions for approximate FRFs
(actually Power Spectral Densities) for nonlinear systems [4–17]. Most of these studies provide estimates which are (often far)
better than the Volterra approach; however, they do not usually have the modal form which is considered desirable here. For the
purposes of the current discussion, the Refs. [7,9,10] are perhaps the most important as they explicitly derive expressions which
accommodate the ‘third-harmonic’ resonance in the Duffing oscillator FRF which is the main concern of this paper. Refs.
[12,14,15,17] are noteworthy for their consideration of multi-degree-of-freedom systems. In terms of other quantities of interest
from structural testing practice, the Volterra approach has also led to an approximate expression for the coherence of a Duffing
oscillator [18].

All of the analytical approximations based on the Volterra series were able to give good qualitative agreement with FRFs
estimated from numerical simulations; however, in all cases the quantitative agreement was far less impressive. Two main
problems arose in the Volterra analysis; the first was the perennial problem associated with the question of convergence of the
series—there is very little one can do to estimate how many terms of the series are needed or indeed if the series is likely to
converge. The second problem is a practical one, the calculations grow explosively in complexity as the term order increases.
In the light of these issues, it is desirable to investigate alternative means of computing nonlinear system FRFs. One promising
approach, dating back to the study by Yar and Hammond [19] is based on the Fokker–Planck–Kolmogorov (FPK) equation
which has proved powerful in the analysis of nonlinear random vibration [20,21]. The paper [19] gave a method for computing
the FRF of a Duffing oscillator under random excitation; and also gave a ‘mode-like’ expansion. However, the calculation was
only carried to ‘first-order’ in a sense which will become clear later. To this degree of approximation, the FPK approach was
able to reproduce shifts in the resonance frequency as a function of excitation level; in fact, the results were shown to agree
with a statistical linearisation approach. What the analysis did not show, was the presence of maxima in the FRF magnitude at
multiples of the fundamental resonance. A further, minor, problem with the paper was that it contained a number of
typographical errors which could potentially lead to misunderstandings. Although most of the errors were corrected when the
methodology was exposed in the later paper [22], this latter paper only considered a cubically nonlinear first-order system
rather than the Duffing oscillator. The modest aim of the current paper is to carry the calculation by Yar and Hammond to a
higher-order and thus explain qualitative features of the Duffing oscillator FRF which could be seen in the numerical solution
presented in [19]; particularly the peaks at ‘harmonics’ of the fundamental resonance.

When the random excitation applied to a system can be idealised as Gaussian white noise, the solution of the
corresponding FPK equations is the transition probability density function. This is considered the most complete statistical
description of the process, and when expressed as an expansion of the eigenfunctions of the corresponding FPK operators,
can be easily manipulated to give the autocovariance and spectral density functions of the system, these can in turn yield
the FRF. Unfortunately, exact solutions to the FPK equations can rarely be found for nonlinear systems, instead methods to
approximate the solution must be used.

This paper follows the work of Yar and Hammond [19,22] closely, in using a variational approach to approximate the
eigenfunctions of the FPK operators of the Duffing oscillator under Gaussian white noise excitation n(t)

€xþ2c _xþxþex3 ¼ nðtÞ (1)

where

E½nðtÞ� ¼ 0, E½nðtÞnðtuÞ� ¼ 2Ddðt�tuÞ

Here, c represents viscous damping, D is a constant which measures the white noise intensity, and d is the Dirac delta
function; E[] is the expectation operator. The coefficient e fixes the relative importance of the cubic term to the linear term,
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whose coefficient is unity. It is clearly sufficient to consider the parametrisation in Eq. (1) as any Duffing oscillator can be
brought into this form by ‘nondimensionalisation’.

In this paper, just as in Yar and Hammond’s paper, a first-order approximation is initially employed, which is sufficient
to reproduce the general features of the statistical linearisation estimate, but not accurate enough to indicate any presence
of the poles at odd multiples of the primary resonance which are known to occur from simulation and experiment [23].
The work is then extended to a third-order approximation which successfully shows the existence of a further peak or
resonance at three times the fundamental resonance (which need not of course be near the natural frequency of the
underlying linear system). The paper follows Yar and Hammond [19] in its description of the basic theory, but attempts to
correct the typographical errors. It is useful to recap in any case as this theory will then form the basis of the extended
calculations.

2. The Fokker–Planck–Kolmogorov (FPK) equations

The transition probability density pðx,y,t9x0,y0,0Þ for the Duffing oscillator system of equation (1) satisfies the
backwards and forwards FPK equations

@p

@t
¼ LðpÞ ðforwardÞ

@p

@t
¼ L�ðpÞ ðbackwardÞ (2)

with the initial condition:

Lt
t-t

pðx,y,t9xt,yt,tÞ ¼ dðx�xtÞdðy�ytÞ:

In the above, L and Ln are adjoint differential operators defined as follows:

LðpÞ ¼ �y
@p

@x
þ
@

@y
ð2cyþxþex3ÞpþD

@2p

@y2

L�ðpÞ ¼ yt
@p

@xt
�

@

@yt
ð2cytþxtþex3

t ÞpþD
@2p

@y2
t

(3)

2.1. Eigenfunction expansion of the FPK

Following the work of Johnson and Scott [24], the transition probability density function can be expressed as an
expansion of the eigenfunctions of the FPK operators L and Ln as follows:

pðx,y,t9x0,y0,0Þ ¼
X1
i ¼ 1

e�li tuiðx,yÞu�i ðx0,y0Þ (4)

where

Luiþliui ¼ 0 (5)

L�u�i þliu
�
i ¼ 0 (6)

Since L and Ln are adjoint, their corresponding eigenvalues li are the same. This leads to the following biorthogonality
relation which will prove useful later: Z Z

uiu
�
j dxdy¼ dij (7)

where dij is the Kronecker delta which is unity when i=j, and zero else. In the paper by Johnson and Scott [24], the
parameter e is required to be small; this is a necessity of their method which is based on a perturbation series in e. The
current work does not exploit the perturbative approach in [24], and therefore does not need to make formal demands on
the size of e; however, as the approach here is based on series approximations, it is required that the influence of the
nonlinearity be weak in some sense and this is ensured by small e or low excitation.

2.2. The stationary probability density

An important solution to (5) occurs when l0 ¼ 0, i.e. Lðu0Þ ¼ 0. u0 or ps is called the stationary probability density and
can be used to find the lower-order statistical moments of the process, such as the displacement variance s2

x . For the
Duffing oscillator

u0 ¼ psðx,yÞ ¼ Ae�ðc=DÞðy2þx2þðe=2Þx4Þ (8)
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where the normalisation constant A is given by

A�1 ¼

ffiffiffiffiffiffiffi
pD

c

r
Gð1=2Þ

ðce=DÞ1=44eð1=4Þðc=eDÞ
U 0,

ffiffiffiffiffiffi
c

eD

r� �

and U(a,b) is the parabolic cylindrical function [25].

2.3. The operator G

Once the stationary probability density function has been found, as in the work of Caughey [26], Yar and Hammond
[19,22] and Johnson and Scott [24], it is found to be advantageous to consider the operator G which is related to L by the
following relation:

GðwÞ ¼
Lðpsðx,yÞwÞ

ps
(9)

From which G is found to be,

GðwÞ ¼�y
@w

@x
þð�2cyþxþex3Þ

@w

@y
þD

@2w

@y2
(10)

where

GðwÞþlw¼ 0 (11)

Now, since,

GðwÞþlw¼ 0)
LðpswÞ

ps
þlw¼ 0) LðpswÞþlpsw¼ 0

it follows that if wiðx,yÞ is an eigenfunction of G then wiðx,yÞpsðx,yÞ is an eigenfunction of L. It is also clear here that G may be
obtained from Ln on simply replacing y by –y. Therefore, if wiðx,yÞ is an eigenfunction of G, wiðx,�yÞ is an eigenfunction of Ln.
Using these two observations Eq. (4) may now be re-expressed as

pðx,y,t9x0,y0,0Þ ¼ psðx,yÞ
X1
i ¼ 1

e�litwiðx,yÞwiðx0,�y0Þ (12)

and the relation (7) can be re-expressed asZ 1
�1

Z 1
�1

psðx,yÞwiðx,yÞwjðx,�yÞdxdy¼ E½wiðx,yÞwjðx,�yÞ� ¼ dij (13)

2.4. Autocovariance and spectral density functions

Expressions for the autocovariance function and spectral density function in terms of the eigenfunctions wiðx,yÞ may
now be easily derived.

The autocovariance function, fxxðtÞ is defined as

fxxðt1�t0Þ ¼ E½xðt0Þxðt1Þ� ¼ E½x0x1�

in an obvious notation. In full,

fxxðt1�t0Þ ¼

Z 1
�1

Z 1
�1

pjðx0, y0, t0; x1, y1, t1Þx0 x1 dx0 dx1 dy0 dy1 (14)

where pjðx0,y0,t0; x1,y1,t1Þ is the complete joint probability density function of ðx0,y0Þ and ðx1,y1Þ. When a stationary
solution of the FPK exists, the joint probability density function can be related to the transition probability density
by

pjðx,y,t; xu,yu,tuÞ ¼ pðxu,yu,tu�t9x,y,0Þpsðx,yÞ (15)

(which is essentially the definition of a conditional probability).
Using this relation, Eq. (14) becomes

fxxðtÞ ¼
Z 1
�1

Z 1
�1

Z 1
�1

Z 1
�1

pðx1,y1,t9x0,y0,0Þpsðx0,y0Þx0x1 dx0 dx1 dy0 dy1

which, on substituting Eq. (14) and then Eq. (12), eventually yields,

fxxðtÞ ¼
X1
i ¼ 1

e�litgiZi (16)
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where

gi ¼

Z 1
�1

Z 1
�1

xwiðx,yÞpsðx,yÞdxdy¼ E½xwiðx,yÞ�

Zi ¼

Z 1
�1

Z 1
�1

xwiðx,�yÞpsðx,yÞdxdy¼ E½xwiðx,�yÞ�

The spectral density function is obtained by taking the Fourier transform of the autocovariance function and is
straightforwardly found to be

SxxðoÞ ¼ 2
X1
i ¼ 1

giZi

li

ðl2
i þo2Þ

(17)

where gi and Zi are as defined above. One can then trivially express the FRF (magnitude) as

9HðoÞ9¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
SxxðoÞ

2D

r
(18)

3. Approximating the eigenfunctions of the FPK operators

Since the eigenfunctions of the FPK equations for the Duffing system cannot be found exactly, an approximation
technique must be used. A variational method based on the Rayleigh–Ritz method is used here as employed by Yar and
Hammond [19] and Atkinson [27].

As shown in Refs. [19,27], approximate eigenfunctions w�ðx,yÞ of the operator G can be expressed in the form

w�ðx,yÞ ¼
XN

i ¼ 1

ciziðx,yÞ (19)

where fziðx,yÞ, i¼ 1,. . .,Ng is a set of independent trial functions orthonormal with respect to the stationary density psðx,yÞ,
and ci are constants to be found. The constant N is fixed by the degree of approximation required. Now, upon noting that,

psðx,yÞ ¼ ae�ðc=DÞy2

be�ðc=DÞðx2þðe=2Þx4Þ ¼ pxðxÞpyðyÞ: (20)

where a and b are appropriate normalisations, one can see immediately that the trial functions will factorise as

zðx,yÞ ¼fiðxÞHjðyÞ (21)

where the ffiðxÞg will be a set of functions orthonormal with respect to pxðxÞ, and the fHjðyÞg will be a set of functions
orthonormal with respect to pyðyÞ. The approximation is further simplified by the observation that only eigenfunctions that
are odd polynomials in x and y will contribute to the autocovariance and spectral density functions [19]. A set of basis
functions {zk} consisting of products of the odd polynomials of ffiðxÞ,HjðyÞg can therefore be used in the place of the full set
in the approximation (19).

Once the basis functions {zk} have been determined, the constants ci, along with the approximate eigenvalues for the
original eigenvalue problem (11), are found by solving the matrix eigenvalue problem [19,26]

ðPþlIÞC ¼ 0 (22)

where the ijth element of the matrix P is E½GðziÞzj�. The eigenvalues l contain the system resonance frequencies and
dampings; the eigenvectors C specify the coefficients in the linear combination (19) and these are all that are needed in
order to construct the FRF from Eq. (18).

3.1. Orthonormal trial functions

To construct the required basis functions, the set ffiðxÞg of functions orthonormal with respect to pxðxÞ, and the set
fHjðyÞg orthonormal with respect to pyðyÞ must first be found. Since y is normally distributed, the fHjðyÞg take the form of
Hermite polynomials. The required orthonormal set is given by

HjðyÞ
� �

¼
hjðyÞ

99hj99
(23)

where

hjðyÞ
� �

¼ D
2c

� ��j=2
h½1�j y D

2c

� ��1=2
	 


99hj99¼
ffiffiffiffiffiffiffiffiffiffiffi
E½h2

j �

q
and fh½1�j ðyÞg are the standard Hermite polynomials orthogonal with respect to the normal probability distribution with
density ð1=

ffiffiffiffiffiffi
2p
p
Þe�y2=2 [25].
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Because pxðxÞ is not Gaussian the construction of ffiðxÞg is approached using the Gram–Schmidt method. This method
takes a finite set of linearly independent functions fUng and generates an orthogonal set fcng that spans the same subspace.
A set of orthonormalised functions ffng can then be obtained from the orthogonal sequence. Here fUng is taken as the set of
monomials fUng ¼ f1,x,x2,. . .,xng.

3.2. Second and higher-order moments of x and y

The constructed orthonormal functions will involve the displacement variance E½x2�, and higher-order moments such as
E½x4�. While the stationary probability density can be used to find the second-order moments E½x2� and E½y2�, recursion
relations must be used to express any higher-order moments. If one considers E½xm� first, one observes that,

E½xm� ¼

Z 1
�1

Z 1
�1

xmpsðx,yÞdxdy¼

Z 1
�1

Z 1
�1

xmAe�ðc=DÞðy2þx2þðe=2Þx4Þdxdy (24)

Integrating by parts, one establishes the following recursion relation:

E xm�2
� �

þeE xm
� �
¼
ðm�3ÞDE½xm�4�

2c
(25)

Using this relation one can find all the higher-order moments providing the displacement variance E½x2� is known.
Directly from the monograph of To [21], one finds the displacement variance to be

E x2
� �
¼

ffiffiffiffiffiffiffiffi
D

4ce

r
U 1,

ffiffiffiffiffiffi
c

De

r �
U 0,

ffiffiffiffiffiffi
c

De

r ��1

(26)

where U[a,b] is again the parabolic cylindrical function.
It remains now to find an expression for E½y2�, and the higher-order moments involving y. As before, one begins with,

E½ym� ¼

Z 1
�1

Z 1
�1

ympsðx,yÞdxdy¼

Z 1
�1

Z 1
�1

ymAe�ðc=DÞðy2þ x2þðe=2Þx4Þdxdy (27)

and integrates by parts; the following recursion relation is found:

E ym
� �
¼
ðm�1ÞDE½ym�2�

2c
(28)

Furthermore, it follows trivially from this recurrence that,

E y2
� �
¼

D

2c

Everything is now in place to use (19) to approximate the eigenfunctions of the system.

3.3. First-order approximation, N=1

Yar and Hammond [19] used the approximation in (19) with N=2, which amounts to a first-order approximation in
x and y. In this case the basis functions are z1ðx,yÞ ¼f1ðxÞ,z2ðx,yÞ ¼H1ðyÞ, where

f1 ¼
x

:c1:
with :c1:¼

ffiffiffiffiffiffiffiffiffiffi
E½x2�

q
¼ sx

H1 ¼
y

:h1:
with :h1:¼

ffiffiffiffiffiffiffiffiffiffi
E½y2�

q
¼ sy ¼

D

2c

and the matrix P of Eq. (22) takes the form,

P¼
E½Gðf1Þf1� E½Gðf1ÞH1�

E½GðH1Þf1� E½GðH1ÞH1�

" #
¼

0
�sy

sx

sy

sx
�2c

2
664

3
775

which yields eigenvalues completely consistent with a statistical linearisation approach, as observed in [19].
A Maple routine [28] was used at this point to solve the matrix eigenvalue problem for a low level of excitation, where

one would expect to observe the FRF of the underlying linear system; the parameters: D=0.005, c=0.05 and e=0.05 were
adopted (the first in order to ensure near-linearity, the second and third in order to make contact with the results obtained
in [19]). With these choices, the approximate eigenvalues of the system were found to be

�0:0571:002i:

Looking at the eigenvalues gives a quick and simple validation as to whether the approximation is working, as the
imaginary parts of the eigenvalues should represent the resonances of the system. In this case the imaginary parts of
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Fig. 2. FRF magnitude.
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the eigenvalues are indicating that the primary resonance occurs at around unit frequency, which is expected. The real part
of the eigenvalue is simply the damping constant c which appears directly in Eq. (1).

From this approximation, the autocorrelation function and FRF magnitude were computed using Eqs. (16) and (17), and
are shown below. The usual forms associated with the single-degree-of-freedom linear oscillator are observed (Figs. 1 and 2).

In order to provide validation in the case where the forcing actually excites the nonlinearity, it is necessary to use
numerical simulation. In this case, the differential equation (1) was stepped forward in time using a standard 4th-order
Runga–Kutta scheme as discussed in [29]. In order to have the correct statistics for the forcing, the variance was set at
s2

n ¼D=Dt, where Dt is the step-size or sampling interval. In all cases, 9 million samples were generated and an 8192-point
FFT was used, with the FRF estimated by averaging the appropriate auto- and cross-spectra. Three FRF estimators are
possible [30]:

H1ðoÞ ¼
SxyðoÞ
SxxðoÞ

(29)
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H2ðoÞ ¼
SyyðoÞ
SyxðoÞ

(30)

and Hv—which is the point-wise geometric mean of the first two. It will be seen later that H2 proves most effective at
expressing the nonlinearity; however, first it is useful to validate the numerical algorithms by considering a linear solution
with a simple closed-form solution for the FRF,

HlðoÞ ¼
1

1�o2þ2ico
(31)
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Taking c¼ 0:05 and simulating appropriate time data; the numerically estimated FRFs are as shown in Fig. 3 in a
comparison with the exact form.

Fig. 3 gives considerable confidence that the numerical results are appropriately accurate. One can now look at the
effect of choosing between the different FRF estimators when the system is significantly nonlinear. For the next simulation,
the parameters D¼ 1, c¼ 0:05, e¼ 0:05, were adopted. The results from different FRF estimators are shown in Fig. 4.

One can immediately observe some of the striking features of a nonlinear system FRF in Fig. 4. In the first case, the
fundamental resonance frequency has shifted upwards from the value of 1 rad/s which it would take at low excitation;
secondly, there is a clear peak at three times the frequency of the fundamental resonance as discussed in the introduction.
One can also see that H2 shows the latter peak most clearly; this is to be expected as the definition of H2 depends most on
the nonlinear response.

Now, substituting the eigenvalues and eigenvectors obtained in the N=2 FPK analysis above into Eq. (18) gives the
analytical approximation to the FRF. (The overall scale of the eigenvectors requires specification at this point, but
discussion will be deferred until a more interesting example later.) The computed FRF is shown in Fig. 5 in a comparison
with the numerically estimated FRFs.

The results of the comparison in Fig. 5 are interesting. First of all, one observes from Eq. (18) that the FRF estimate from
the FPK equation actually corresponds to the H2 estimate, and this is indeed the closest to the FPK result in terms of
peak magnitude. For this reason, only the H2 estimate will be shown in the following. One can also see that the peak
frequency is faithfully reproduced as one might expect from the fact that the N=2 FPK estimate coincides with statistical
linearisation. Apart from these points of agreement, the FPK estimate appears to disagree in terms of effective damping
(peak width) and thus does not show the spectral broadening expected, as discussed in previous studies [7]. Because
comparisons between simulations and the N=2 FPK solution are given in [19], no further results will be shown here,
instead the next higher-order of approximation will be explored.

3.4. Third-order approximation, N=6

Eq. (19) was used with N=6 to compute the third-order approximation of the FPK solution. The required basis functions in
this case are fz1,z2,z3,z4,z5,z6gpff1ðxÞ,H1ðyÞ,f1ðxÞH2ðyÞ,f2ðxÞH1ðyÞ,f3ðxÞ,H3ðxÞg, and P therefore becomes a 6�6 matrix

P¼

E½Gðf1Þf1� E½Gðf1ÞH1� E½Gðf1Þf1H2� E½Gðf1Þf2H1� E½Gðf1Þf3� E½Gðf1ÞH3�

E½GðH1Þf1� E½GðH1ÞH1� E½GðH1Þf1H2� E½GðH1Þf2H1� E½GðH1Þf3� E½GðH1ÞH3�

E½Gðf1H2Þf1� E½Gðf1H2ÞH1� E½Gðf1H2Þf1H2� E½Gðf1H2Þf2H1� E½Gðf1H2Þf3� E½Gðf1H2ÞH3�

E½Gðf2H1Þf1� E½Gðf2H1ÞH1� E½Gðf2H1Þf1H2� E½Gðf2H1Þf2H1� E½Gðf2H1Þf3� E½Gðf2H1ÞH3�

E½Gðf3Þf1� E½Gðf3ÞH1� E½Gðf3Þf1H2� E½Gðf3Þf2H1� E½Gðf3Þf3� E½Gðf3ÞH3�

E½GðH3Þf1� E½GðH3ÞH1� E½GðH3Þf1H2� E½GðH3Þf2H1� E½GðH3Þf3� E½GðH3ÞH3�

2
6666666664

3
7777777775
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A certain amount of tedious algebra leads to the following expression for P:
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This expression is pleasantly sparse; also the off-diagonal elements hint at some symmetry. Clearly the matrix cannot
be antisymmetric as some diagonal elements are non-zero; nonetheless, there is symmetry and it is possible to prove the
following result which will be dignified with the title of lemma.

Lemma. With the orthogonal basis assumed above, the matrix P satisfies:

Pij ¼ Pji if i�j is even

Pij ¼�Pji if i�j is odd

Proof. One begins with the definition

Pij ¼ E½GðwiÞwj� ¼

Z 1
�1

psðx,yÞGðwiðx,yÞÞwjðx,yÞdxdy

The latter expression can be manipulated, based on the definition of G in Eq. (9),Z 1
�1

psðx,yÞGðwiðx,yÞÞwjðx,yÞdxdy¼

Z 1
�1

psðx,yÞ½Lðpsðx,yÞwiðx,yÞÞ=psðx,yÞ�wjðx,yÞdxdy

¼

Z 1
�1

Lðpsðx,yÞwiðx,yÞÞwjðx,yÞdxdy¼

Z 1
�1

psðx,yÞwiðx,yÞL�ðwjðx,yÞÞdxdy

according to the definition of the adjoint [19]. Now, one makes the trivial change of variables y-�y and the property that
L�ðx,yÞ ¼ Gðx,�yÞ to obtain

Pij ¼

Z 1
�1

psðx,�yÞwiðx,�yÞGðwjðx,�yÞÞdxdy

Now, for the Duffing oscillator, one has psðx,yÞ ¼ psðx,�yÞ: Further, with the labelling of the basis functions adopted
above, one has

if i¼ 1,3,5 : wiðx,yÞ ¼�wiðx,�yÞ

if i¼ 2, 4, 6 : wiðx,yÞ ¼wiðx,�yÞ

and the result follows. &

This result is very useful. If one can maintain an appropriate ordering of the basis functions for an even higher
approximation, one will have the same result; independent of ordering, one will still only have the same independent
number of elements of P as if it were symmetric. In fact, the matrix P here has all the off-diagonal elements with i� j even,
equal to zero, and this means that P is the sum of a diagonal and a skew-symmetric matrix.1 It may be that this is a general
result; however, the authors cannot find an immediate reason for this. If this were to be true generally, it would simplify
the derivation of P for higher-order approximations and could potentially simplify the eigenproblem.

A Maple routine was once again used to solve the 6�6 matrix eigenvalue problem (22). As before, for a quick validation of the
approximation one can once again consider the approximate eigenvalues. For a higher level of excitation which is expected to
force some nonlinear behaviour: for D=1, c=0.05 and e=0.001, the approximate eigenvalues of the system are found to be

�0:016þ1:027 i �0:016�1:027 i

�0:070þ3:081 i �0:070�3:081 i

�0:048þ1:012 i �0:048�1:012 i

As expected, one pair of the eigenvalues have imaginary part close to unity, representing the frequency corresponding
to the primary resonance. The second pair have imaginary parts close to three, which confirms that the approximation is
1 The authors would like to thank one of the anonymous referees for this observation.
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recreating the secondary resonance at three times the natural frequency. The third pair of eigenvalues suggest the presence
of a double pole at around unit frequency.

The FRF is computed using Eq. (18) as before, once the eigenvalues and eigenvectors of P are known. The only real
subtlety here relates to the normalisation of the eigenvectors. Given an eigenvector fc1,c2,c3,c4,c5,c6g, this is only known up
to an overall scale, so an equally good eigenvector would be kfc1,c2,c3,c4,c5,c6g for any real k. However, the linear
combinations in Eq. (19) are required to be orthonormal, in particular E½w�ðx,yÞw�ðx,�yÞ� ¼ 1, Now the trial functions in the
basis are themselves orthonormal and substituting the linear expansion (19) into the orthonormality relation gives, with
the ordering of basis functions adopted here,

k2 c2
1�c2

2þc2
3�c2

4þc2
5�c2

6

� �
¼ 1

and this fixes the overall scale of the eigenvectors. In the simulations conducted here, in order to make contact with the
parameters chosen for the study in [19], a value of unity is taken for D and the following combinations of c and e are
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Fig. 6. Comparison between FPK analytical approximation to FRF (6 terms) and numerical simulation: (a) c¼ 0:05, e¼ 0:05; (b) c¼ 0:05, e¼ 0:5;

(c) c¼ 0:5, e¼ 0:05; and (d). c=0.5, e=0.5.
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considered: {(0.05,0.05), (0.05, 0.5), (0.5, 0.05), (0.5, 0.5)}. These are very high values of the parameters concerned and
therefore constitute quite a severe test of the expansions. Fig. 6 summarises the results of the computations.

The results are rather interesting (Figs. 6c and d, less so because the very high damping has destroyed the modal
nature of the FRF). However, Fig. 6a shows very good agreement with the FRF compared with the result given in Fig. 5 for
the N=2 estimate. The approximation now shows the correct level of effective damping (peak width). More importantly,
the analytical approximation shows a peak at a frequency three times that of the fundamental resonance as hoped.
In Fig. 6b, the level of nonlinearity is very high indeed and the approximation is having difficulty; in order to reproduce
the width of the main peak the approximation has produced a split peak; one would anticipate that a better
representation would be obtained at the next order of approximation. The next highest approximation would have
12 terms corresponding to six individual peaks with which to construct the FRF; it would be expected that, at that order of
approximation, a peak at five times the frequency of the fundamental resonance would appear.

4. Comparison with the Volterra series

In order to make contact with previous work in [2] on the analytical approximation of the FRF, one can compare the
current results with those obtained using the Volterra series. To the highest order approximation pursued in [2], one finds

LðoÞ ¼HlðoÞ�
3De
2c

HlðoÞ2þ
9D2e2HlðoÞ2

4c2
1þHlðoÞþ

2c2

p2
IðoÞ

� �
(32)

where

IðoÞ ¼
�p2ðo2�3o2

d�10io�27c2Þ

4c2ðo�od�3icÞðoþod�3icÞðo�3od�3icÞðoþ3od�3icÞ
(33)

with o2
d ¼ 1�c2 and Hl given by Eq. (31). If one evaluates the expression in Eq. (32) for the case: c¼ 0:05, e¼ 0:05, the result

shown in Fig. 7 is obtained (in comparison with the numerically simulated FRF). The results are rather poor; qualitative
agreement is largely absent, although there is good agreement in the tail where the effects of nonlinearity are not felt. It is not
surprising that the Volterra result is poor here. As indicated above, the value of the cubic stiffness coefficient is very high here
and perhaps more importantly, the value of D=1, is completely inconsistent with regarding D as a ‘small’ expansion
parameter. In defence of the Volterra result, one can at least point out that the peak at three times the fundamental resonance
frequency is represented. The poor quantitative approximation provided by Volterra estimates was also highlighted in [13].

The two analytical results are not directly comparable in all respects; however, there at least two points of contact:
1.
 To the lowest order of approximation, a single pole in the expression represents the modal structure in the FRF. The
difference between the two approaches is that the Volterra approach generates the FRF of the underlying linear system
and the pole corresponds to its natural frequency. In contrast, the pole in the FPK lowest-order approximation
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Fig. 7. Comparison between Volterra approximation to FRF and numerical simulation for c¼ 0:05 and e¼ 0:05:
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corresponds to the statistical linearisation result and can therefore follow changes in excitation level; this makes the
FPK approach arguably superior. When the order of approximation is increased, both methods introduce a pole
corresponding to the third ‘harmonic’. In the case of the Volterra approach, this is at three times the resonance
frequency of the underlying nonlinear system; in the case of the FPK equation, the harmonic resonance appears to
follow the fundamental resonance under changes in excitation level. Both methods (sort of) increase the multiplicity of
the pole at the fundamental resonance in the higher-order approximation. In qualitative terms, the fixed nature of the
Volterra poles seems to make it much harder for the FRF approximation to shift the resonance peak when the excitation
level increases, this is clear from Fig. 7.
2.
 Both methods place all the poles of the approximate FRF in the lower half of the complex plane. As discussed in [2], this
was regarded as a merit of the Volterra approximation as it goes some way to explaining why the Hilbert transform test
for nonlinearity gives a null result if applied to an FRF from random excitation. However, it appears that the FPK FRF
approximation shares the property and therefore also ‘explains’ the Hilbert transform result. Because the FPK
approximation also gives much better fidelity in modelling the FRF at higher levels of excitation and nonlinearity,
it should perhaps be regarded as the superior approach.

In terms of computational effort, both the FPK and Volterra approaches are algebraically demanding. In the case of
the Volterra approach, the analyst is faced with the evaluation of many multiple integrals by the calculus of residues. In the
case of the FPK equation, one is faced with the problem of populating the P matrix. On balance, the FPK approach appears to
require less effort; a further advantage is that the symmetry relations obeyed by the elements of the P matrix offer a check
as the calculation proceeds.

5. Conclusions

The main result of the paper is an extended approximation to the Duffing oscillator FRF which reproduces features of
the FRF absent from the lower-order approximation computed previously by Yar and Hammond. The main feature of
interest is the appearance of a peak in the FRF at three times the frequency of the fundamental resonance; apart from this,
the approximation matches numerically simulated FRFs more closely. The research is part of a general programme of work
by the authors on the analytical approximation of various observable quantities typically measured during structural
dynamic test. Previous work in this programme was centred on the use of the Volterra series; while this was successful in
reproducing the qualitative features of the various observables, quantitative agreement was sometimes absent. The current
approach based on the Fokker–Planck–Komogorov equation appears to offer better qualitative fidelity at a lower
computational cost. Further research will extend the computations to higher-order, consider different nonlinear systems
and extend the approach to multi-degree-of-freedom systems. The FPK approach adopted here appeals to the authors
largely because of the ‘mode-like’ expression it provides; if one is not too concerned with this, it has to be admitted that
there are more accurate and less algebraically-demanding approaches to FRF and spectrum estimation, as a consideration
of the references here would show.

Note added in proof

After the article had reached the proof stage, another anonymous review was made available to the authors. This quite
rightly pointed-out deficiencies in the citations of previous work. The authors have added a number of appropriate
references as a result of this, and would like to thank the reviewer for his or her comment.
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